37 research outputs found

    Sequence dependent exposure of mammary carcinoma cells to Taxotere® and the MEK1/2 inhibitor U0126 causes enhanced cell killing in vitro

    Get PDF
    Taxol (paclitaxel) and Taxotere (docetaxel) are considered as two of the most important anticancer chemotherapy drugs. The cytotoxic action of these drugs has been linked to their ability to inhibit microtubule depolymerization, causing growth arrest and subsequent cell death. Studies by a number of laboratories have also linked suppression of mitogen activated protein kinase (MAPK) signaling to enhanced Taxol toxicity. The present study examined the interactions of the semi-synthetic taxane Taxotere with MEK1/2 inhibitors in epithelial tumor cells. Concurrent treatment of MDA-MB-231 mammary and DU145 prostate carcinoma cells with Taxotere and MEK1/2 inhibitor resulted in protection from the anti-proliferative effects of Taxotere in MTT assays. In contrast, in MCF-7 mammary cells, concurrent Taxotere and MEK1/2 inhibitor treatment weakly enhanced the antiproliferative effects of the taxane. Sequential treatment of MDA-MB-231 and MCF-7 cells with Taxotere followed by MEK1/2 inhibitor also enhanced the anti-proliferative effects of the taxane in MTT assays. However, no enhancement was observed in DU145 or PC-3 cells. Colony formation assays, including isobologram analyses, provided a more definitive demonstration that MCF-7 and MDA-MB-231 cells were sensitized to the toxic effects of Taxotere by U0126. Similar data were observed using Laulimalide, which binds to tubulin at a different site to Taxotere. The enhancement in Taxotere anti-proliferative effects by U0126 correlated with increased cell killing, 48-72h after treatment of cells that was blocked by inhibition of caspase 9, but not caspase 8, function. This observation was associated with prolonged suppression of ERK1/2 and AKT activity, without alteration in either p38 or JNK1/2 activity. Collectively these findings demonstrate that sequential administration of Taxotere followed by MEK1/2 inhibition can lead to increased cell death and loss of reproductive capacity in some, but not all, human tumor cells. ©2003 Landes Bioscience.Fil: Yacoub, Adly. Virginia Commonwealth University; Estados UnidosFil: Han, Song Iy. Virginia Commonwealth University; Estados UnidosFil: Caron, Ruben Walter. Virginia Commonwealth University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Gilfor, Donna. Virginia Commonwealth University; Estados UnidosFil: Mooberry, Susan. Southwest Foundation for Biomedical Research; Estados UnidosFil: Grant, Steven. Virginia Commonwealth University; Estados UnidosFil: Dent, Paul. Virginia Commonwealth University; Estados Unido

    Stress and Radiation-Induced Activation of Multiple Intracellular Signaling Pathways

    Get PDF
    Exposure of cells to a variety of stresses induces compensatory activations of multiple intracellular signaling pathways. These activations can play critical roles in controlling cell survival and repopulation effects in a stress-specific and cell type-dependent manner. Some stress-induced signaling pathways are those normally activated by mitogens such as the EGFR/RAS/PI3K-MAPK pathway. Other pathways activated by stresses such as ionizing radiation include those downstream of death receptors, including pro-caspases and the transcription factor NFKB. This review will attempt to describe some of the complex network of signals induced by ionizing radiation and other cellular stresses in animal cells, with particular attention to signaling by growth factor and death receptors. This includes radiation-induced signaling via the EGFR and IGFI-R to the PI3K, MAPK, JNK, and p38 pathways as well as FAS-R and TNF-R signaling to pro-caspases and NFKB. The roles of autocrine ligands in the responses of cells and bystander cells to radiation and cellular stresses will also be discussed. Based on the data currently available, it appears that radiation can simultaneously activate multiple signaling pathways in cells. Reactive oxygen and nitrogen species may play an important role in this process by inhibiting protein tyrosine phosphatase activity. The ability of radiation to activate signaling pathways may depend on the expression of growth factor receptors, autocrine factors, RAS mutation, and PTEN expression. In other words, just because pathway X is activated by radiation in one cell type does not mean that pathway X will be activated in a different cell type. Radiation-induced signaling through growth factor receptors such as the EGFR may provide radioprotective signals through multiple downstream pathways. In some cell types, enhanced basal signaling by proto-oncogenes such as RAS may provide a radioprotective signal. In many cell types, this may be through PI3K, in others potentially by NFKB or MAPK. Receptor signaling is often dependent on autocrine factors, and synthesis of autocrine factors will have an impact on the amount of radiation-induced pathway activity. For example, cells expressing TGFalpha and HB-EGF will generate protection primarily through EGFR. Heregulin and neuregulins will generate protective signals through ERBB4/ERBB3. The impact on radiation-induced signaling of other autocrine and paracrine ligands such as TGFbeta and interleukin 6 is likely to be as complicated as described above for the ERBB receptors.Fil: Dent, Paul. Virginia Commonwealth University; Estados UnidosFil: Yacoub, Adly. Virginia Commonwealth University; Estados UnidosFil: Contessa, Joseph. Virginia Commonwealth University; Estados UnidosFil: Caron, Ruben Walter. Virginia Commonwealth University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Amorino, Geroge. Virginia Commonwealth University; Estados UnidosFil: Valerie, Kristoffer. Virginia Commonwealth University; Estados UnidosFil: Hagan, Michael P.. Virginia Commonwealth University; Estados UnidosFil: Grant, Steven. Virginia Commonwealth University; Estados UnidosFil: Schmidt Ullrich, Rupert. Virginia Commonwealth University; Estados Unido

    Pharmocologic inhibitors of the mitogen activated protein kinase cascade have the potential to interact with ionizing radiation exposure to induce cell death in carcinoma cells by multiple mechanisms

    Get PDF
    Recent studies have shown that inhibition of stress-induced signaling via the mitogen activated protein kinase (MAPK) pathway can potentiate the toxic effects of chemotherapeutic drugs and ionizing radiation. Because of these observations, we have further investigated the impact upon growth and survival of mammary (MDA-MB-231, MCF7, T47D), prostate (DU145, LNCaP, PC3) and squamous (A431) carcinoma cells following irradiation and combined long-term exposure to MEK1/2 inhibitors. Exposure of carcinoma cells to ionizing radiation resulted in MAPK pathway activation initially (0-4h) and modestly enhanced MAPK activity at later times (24h-96h). Inhibition of radiation-induced MAPK activation using MEK1/2 inhibitors potentiated radiation-induced apoptosis in two waves, at 21-30h and 96-144h after exposure. The potentiation of apoptosis was not observed in MCF7, LNCaP, or PC3 cells. At 24h, the potentiation of apoptosis was independent of radiation dose whereas at 108h, apoptosis correlated with increasing dose. Removal of the MEK1/2 inhibitor either 6h or 12h after exposure abolished the potentiation of apoptosis at 24h. At this time, the potentiation of apoptosis correlated with cleavage of pro-caspases -8, -9 and -3, and with release of cytochrome c into the cytosol. Inhibition of caspase function using a pan-caspase inhibitor ZVAD blocked the enhanced apoptotic response at 24h. Selective inhibition of caspase 9 with LEHD or caspase 8 with IETD partially blunted the apoptotic response in MDA-MB-231, DU145 and A431 cells, whereas inhibition of both caspases reduced the response by >90%. Removal of the MEK1/2 inhibitor either 24h or 48h after exposure abolished the potentiation of apoptosis at 108h. Incubation of cells with ZVAD for 108h also abolished the potentiation of apoptosis. In general agreement with the finding that prolonged inhibition of MEK1/2 was required to enhance radiation-induced apoptosis at 108h, omission of MEK1/2 inhibitor from the culture media during assessment of clonogenic survival resulted in either little or no significant alteration in radiosensitivity. Collectively, our data show that combined exposure to radiation and MEK1/2 inhibitors can reduce survival in some, but not all, tumor cell types. Prolonged blunting of MAPK pathway function following radiation exposure is required for MEK1/2 inhibitors to have any effect on carcinoma cell radiosensitivity.Fil: Qiao, Liang. Virginia Commonwealth University; Estados UnidosFil: Yacoub, Adly. Virginia Commonwealth University; Estados UnidosFil: McKinstry, Robert. Virginia Commonwealth University; Estados UnidosFil: Park, Jong Sung. Virginia Commonwealth University; Estados UnidosFil: Caron, Ruben Walter. Virginia Commonwealth University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Fisher, Paul B.. Columbia University. College of Physicians and Surgeons; Estados UnidosFil: Hagan, Michael P.. Virginia Commonwealth University; Estados UnidosFil: Grant, Steven. Virginia Commonwealth University; Estados UnidosFil: Dent, Paul. Virginia Commonwealth University; Estados Unido

    mda-7/IL-24, novel anticancer cytokine: Focus on bystander antitumor, radiosensitization and antiangiogenic properties and overview of the phase I clinical experience (Review)

    Full text link
    Subtraction hybridization applied to a ‘differentiation therapy’ model of cancer employing human melanoma cells resulted in the cloning of melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24). Initial studies confirm an inverse correlation between mda-7 expression and melanoma development and progression. Forced expression of mda-7 by means of a plasmid or via a replication incompetent adenovirus (Ad.mda-7) promotes growth suppression and induces apoptosis in a broad array of human cancers. In contrast, mda-7 does not induce growth suppressive or toxic effects in normal cells. Based on structure (containing an IL-10 signature motif), secretion by cells (including subsets of T-cells) and location on chromosome 1q (in an area containing IL-10- family genes), mda-7 has now been renamed mda-7/IL-24. Studies by several laboratories have uncovered many of mda-7/ IL-24\u27s unique properties, including cancer-specific apoptosisinduction, cell cycle regulation, an ability to inhibit angiogenesis, potent ‘bystander antitumor activity’ and a capacity to enhance the sensitivity of tumor cells to radiation, chemo- therapy and monoclonal antibody therapy. Moreover, based on its profound cancer tropism, substantiated by in vivo human xenograft studies in nude mice, mda-7/IL-24 (administered as Ad.mda-7) was evaluated in a phase I clinical trial in patients with melanomas and solid cancers. These studies document that mda-7/IL-24 is well tolerated and demonstrates evidence of significant clinical activity. In these contexts, mda-7/IL-24 represents a unique cytokine gene with potential for therapy of human cancers. The present review focuses on three unique properties of mda-7/IL-24, namely its potent ‘bystander antitumor activity’, ability to sensitize tumor cells to radiation, and its antiangiogenesis properties. Additionally, an overview of the phase I clinical trial is provided. These studies affirm that mda-7/IL-24 has promise for the management of diverse cancers

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    CHK1 Inhibitors in Combination Chemotherapy: Thinking Beyond the Cell Cycle

    No full text
    Cellular sensing of DNA damage, along with concomitant cell cycle arrest, is mediated by a great many proteins and enzymes. One focus of pharmaceutical development has been the inhibition of DNA damage signaling, and checkpoint kinases (Chks) in particular, as a means to sensitize proliferating tumor cells to chemotherapies that damage DNA. Although the clinical development of Chk inhibitors has overcome many initial obstacles, such drugs have nevertheless failed to show a high level of clinical activity when combined with DNA-damaging chemotherapeutic agents. One very likely reason is the induction of compensatory activities in response to the Chk inhibitor itself. A variety of experimental approaches indicate that the Chk inhibitors of interest influence basic signaling events that could not have been predicted. In this way, the clinical development of such inhibitors is tied to attempts to understand very broad connections among cell signaling pathways

    Inhibition of vimentin or β 1

    No full text
    corecore